Velocity autocorrelation function in uniformly heated granular gas
نویسندگان
چکیده
منابع مشابه
Computer simulation of uniformly heated granular fluids
Direct Monte Carlo simulations of the EnskogBoltzmann equation for a spatially uniform system of smooth inelastic spheres are performed. In order to reach a steady state, the particles are assumed to be under the action of an external driving force which does work to compensate for the collisional loss of energy. Three different types of external driving are considered: (a) a stochastic force, ...
متن کاملDirect simulation of the uniformly heated granular boltzmann equation,
In this paper, we study properties of dilute granular flows, which are described by the spatially homogeneous uniformly heated inelastic Boltzmann equation. A new modification of the direct simulation Monte Carlo method is presented and validated using some analytically known functional of the solution. Then, the algorithm is applied to compute high velocity tails of the steady-state solution. ...
متن کاملVelocity distributions and correlations in homogeneously heated granular media.
We compare the steady state velocity distributions from our three-dimensional inelastic hard sphere molecular dynamics simulation for homogeneously heated granular media, with the predictions of a mean field-type Enskog-Boltzmann equation for inelastic hard spheres [T. P. C. van Noije and M. H. Ernst, Granular Matter 1, 57 (1998)]. Although we find qualitative agreement for all values of densit...
متن کاملVelocity distribution in a viscous granular gas.
We investigate the velocity relaxation of a viscous one-dimensional granular gas in which neither energy nor momentum is conserved in a collision. Of interest is the distribution of velocities in the gas as it cools, and the time dependence of the relaxation behavior. A Boltzmann equation of instantaneous binary collisions leads to a two-peaked distribution, as do numerical simulations of grain...
متن کاملInjected power and entropy flow in a heated granular gas
– Our interest goes to the power injected in a heated granular gas and to the possibility to interpret it in terms of entropy flow. We numerically determine the distribution of the injected power by means of Monte-Carlo simulations. Then, we provide a kinetic theory approach to the computation of such a distribution function. Finally, after showing why the injected power does not satisfy a Fluc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPJ Web of Conferences
سال: 2017
ISSN: 2100-014X
DOI: 10.1051/epjconf/201714004007